Search results for "Photometric redshift"

showing 10 items of 13 documents

A K s -band-selected catalogue of objects in the ALHAMBRA survey

2016

The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (〈 z〉 = 0.86) and the approximately I-band selection, there is a noticeable bias against red objects at moderate redshift.We avoid this bias by creating a new catalogue selected in the Ks band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z > 1. We select objects using the Ks band images, which reach an approximate AB magnitude limit Ks ≈ 22. We generate masks an…

PopulationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsApproxSurveys01 natural sciencesPhotometry (optics)Apparent magnitude0103 physical sciencesobservations [Cosmology]education010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysicseducation.field_of_study010308 nuclear & particles physicsCosmology: observationsAstronomyGalaxies: evolutionAstronomy and AstrophysicsAB magnitudeevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Monthly Notices of the Royal Astronomical Society
researchProduct

High redshift galaxies in the ALHAMBRA survey

2015

Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in th…

Physicseducation.field_of_studyPopulationFOS: Physical sciencesSampling (statistics)Astronomy and AstrophysicsContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftGalaxySpace and Planetary ScienceLimiting magnitudeAstrophysics of Galaxies (astro-ph.GA)Probability distributioneducationAstrophysics::Galaxy AstrophysicsPhotometric redshiftAstronomy & Astrophysics
researchProduct

The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

2014

[Aims]: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. [Methods]: We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). [Results]: …

Galaxies: fundamental parametersCosmology and Nongalactic Astrophysics (astro-ph.CO)Stellar massGalaxies: statisticsFOS: Physical sciencesAstrophysicsinteractions [Galaxies]Astrophysics::Cosmology and Extragalactic AstrophysicsPoisson distribution01 natural sciencesLuminositysymbols.namesakestatistics [Galaxies]0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysics[PHYS]Physics [physics]COSMIC cancer database010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceRedshiftGalaxyGalaxies: interactionsSpace and Planetary Sciencefundamental parameters [Galaxies]symbols[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A photometric redshift of z = 1.8$^{\sf{+0.4}}_{\sf{-0.3}}$ for the AGILE GRB 080514B

2008

Aims: The AGILE gamma-ray burst GRB 080514B is the first burst with detected emission above 30 MeV and an optical afterglow. However, no spectroscopic redshift for this burst is known. Methods: We compiled ground-based photometric optical/NIR and millimeter data from several observatories, including the multi-channel imager GROND, as well as ultraviolet \swift UVOT and X-ray XRT observations. The spectral energy distribution of the optical/NIR afterglow shows a sharp drop in the \swift UVOT UV filters that can be utilized for the estimation of a redshift. Results: Fitting the SED from the \swift UVOT $uvw2$ band to the $H$ band, we estimate a photometric redshift of $z=1.8^{+0.4}_{-0.3}$, c…

Astrophysics::High Energy Astrophysical PhenomenaUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica::OtrasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsmedicine.disease_causemedicineAstrophysics::Solar and Stellar AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasQCAstrophysics::Galaxy AstrophysicsQB:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica::Otras [UNESCO]Photometric redshiftGamma rays: burstsPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsRedshiftAfterglowbursts [Gamma rays]Space and Planetary ScienceSpectral energy distributionMillimeterGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]UltravioletAstronomy & Astrophysics
researchProduct

The ALHAMBRA survey: B -band luminosity function of quiescent and star-forming galaxies at 0.2 ≤  z  < 1 by PDF analysis

2016

[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also…

luminosity function mass function [Galaxies]Galaxies: statisticsAstrophysics::High Energy Astrophysical PhenomenaPopulationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminositystatistics [Galaxies]0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftLuminosity function (astronomy)Physicseducation.field_of_study010308 nuclear & particles physicsGalaxies: luminosity function mass functionGalaxies: evolutionAstronomy and AstrophysicsCosmic varianceB bandevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesRedshiftGalaxy[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

2021

Ilbert, O., et al. (Euclid Collaboration)

statistical [Methods]IMPACTUNIVERSEAstrophysics01 natural sciencesDark energyGalaxies: distances and redshiftdark energyPHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingPhotometric redshiftmedia_commonPhysicsdistances and redshift [Galaxies]Dark energy; Galaxies: distances and redshifts; Methods: statisticalSIMULATIONastro-ph.CO3103 Astronomy and AstrophysicsProbability distributionSpectral energy distributiongalaxies: distances and redshiftsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 Physicsastro-ph.GAmedia_common.quotation_subjectFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics1912 Space and Planetary Science0103 physical sciencesdistances and redshifts [Galaxies]/dk/atira/pure/subjectarea/asjc/1900/1912DISTRIBUTIONSmethods: statistical010308 nuclear & particles physicsAstronomy and AstrophysicsPERFORMANCE115 Astronomy Space scienceAstrophysics - Astrophysics of GalaxiesEVOLUTIONGalaxyUniverseRedshiftSTELLARRESOLUTIONSpace and Planetary Science10231 Institute for Computational ScienceAstrophysics of Galaxies (astro-ph.GA)Dark energy/dk/atira/pure/subjectarea/asjc/3100/3103[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Recovering the real-space correlation function from photometric redshift surveys

2008

Measurements of clustering in large-scale imaging surveys that make use of photometric redshifts depend on the uncertainties in the redshift determination. We have used light-cone simulations to show how the deprojection method successfully recovers the real space correlation function when applied to mock photometric redshift surveys. We study how the errors in the redshift determination affect the quality of the recovered two-point correlation function. Considering the expected errors associated to the planned photometric redshift surveys, we conclude that this method provides information on the clustering of matter useful for the estimation of cosmological parameters that depend on the la…

PhysicsAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsScale (descriptive set theory)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)Space (mathematics)AstrophysicsGalaxyRedshiftDistribution (mathematics)Space and Planetary ScienceCluster analysisPhotometric redshift
researchProduct

Photo-z optimization for measurements of the BAO radial scale

2009

ArXiv pre-print avaible at:http://arxiv.org/abs/0812.3414

PopulationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicspower spectrumLambda01 natural sciencesComputer Science::Digital LibrariesSpectral lineComputer Science::Computational Engineering Finance and Science0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysicseducation.field_of_study010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsShot noiseAstronomy and Astrophysicssuveys of galaxiesRedshiftGalaxyAstronomiaAstrophysics::Earth and Planetary AstrophysicsBaryon acoustic oscillations
researchProduct

GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

2005

We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050…

010504 meteorology & atmospheric sciencesgamma rays: burstsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsJet (particle physics)Astrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]gamma rays: individual: GRB 0509040103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhotometric redshiftPhysicsCOSMIC cancer database[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Star formationAstrophysics (astro-ph)Astronomy and Astrophysicsearly UniverseLight curveRedshiftAfterglowSpace and Planetary Sciencecosmology: observationsGamma-ray burst
researchProduct

The ALHAMBRA survey: Bayesian photometric redshifts with 23 bands for 3 deg2

2014

A. Molino et al.

media_common.quotation_subjectPhotometric systemAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSurveyslaw.inventionPhotometry (optics)Telescopelawdistances and redshifts [Galaxies]Astrophysics::Solar and Stellar Astrophysicsdata analysis [Methods]Astrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhotometric redshiftmedia_commonPhysics[PHYS]Physics [physics]photometry [Galaxies]photometric [Techniques]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCataloguesevolution [Galaxies]GalaxyRedshift13. Climate actionSpace and Planetary ScienceSkyMagnitude (astronomy)Astrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct